О СХОДИМОСТИ ПО ДИАГОНАЛЯМ И АБСОЛЮТНОЙ СХОДИМОСТИ СТЕПЕННЫХ РЯДОВ С ДЕЙСТВИТЕЛЬНЫМИ КОЭФФИЦИЕНТАМИ.

Опубликовано в выпуске: 1/2019 (23) , 02.04.2019
Известно, что аналог теоремы Абеля, справедливой для степенных рядов одной переменной, не имеет места для степенных рядов двух и более переменных. В данной работе показано, что существует двойной степенной ряд, который сходится по диагоналям на множестве плоскостей, проходящих через начало координат, множество имеет мощность «с», а ряд не имеет области абсолютной сходимости. С другой стороны, доказано, что если двойной степенной ряд с действительными коэффициентами сходится по диагоналям на отрезке, то ряд сходится абсолютно в области G. В работе дается описание области G.

Новости

Полезные ресурсы